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This paper describes a fully implicit finite-difference method for calculating the unsteady 
gas f low in pipeline networks. The algorithm for solving the finite-difference equations 
of a pipe is based on the Newton-Raphson method. The Von Neumann stability analysis 
on the finite-difference equations of a pipe shows that the equations are unconditionally 
stable. An iterative convergence method is applied to the calculation of node pressure at 
junctions in networks. The parameter study on the convergence shows that the stability 
depends on the convergence tolerance. Calculation results of a few sample cases are 
compared with those of the method of characteristics and the two-step Lax-Wendroff 
method. An excellent agreement between the methods is obtained when a small time step 
is used. Computation time can be greatly reduced by using the implicit method. 
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1. I n t r o d u c t i o n  

The numerical calculation of unsteady pipe flow plays an 
important role in the design of petrochemical plants, hydraulic 
power machines, long distance pieplines, etc., and has become 
popular in these industrial areas due to the development of 
high-speed computers. 

Reviewing calculation methods, we find traditional explicit 
methods such as the method of characteristics (MOC) (Wylie 
and Streeter 1978), the Lax-Wendroff method (Bender 1979), 
and the two-step Lax-Wendroff method (Poloni et al. 1987). 
However, Fincham and Goldwater (1979) pointed out that 
these methods have an obvious disadvantage in calculations 
concerning large pipeline networks, because the time-steps are 
restricted by the Courant condition. 

The main purpose of this paper is to demonstrate an 
appropriate technique for the predictive simulation of large, 
complicated city gas networks that require fast computation to 
predict long-term behavior over a few days. For this purpose, 
several implicit methods have been developed. Guy (1967) 
proposed a partially implicit algorithm based on the 
Crank-Nicolson method, in which the continuity and 
momentum equations are applied, node to node, alternatively; 
Guy solved the equations by the calculation of a tridiagonal 
matrix. Rachford et al. (1975) developed an implicit technique 
using the Galerkin method. Schmidt (1977) used the 
Crank-Nicolson and the backward Euler methods alternately 
to avoid spurious oscillations (see Chua 1982). 

Osiadacz (1984) applied a fully implicit method to the 
linearized equations, which are obtained by neglecting inertia 
terms. Some of these methods are already in use in the gas 
industry. However, there is very limited information available 
concerning instability of solutions and comparison with other 
methods. 

This paper aims to present another fast, stable, and 
practically accurate implicit method for the calculation of the 
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transient gas flow in large pipeline networks. The method is 
based on a fully implicit algorithm that includes the calculation 
of the inertia terms. The von Neumann stability anlaysis (see 
Roache, 1985) shows that this method is unconditionally stable, 
while the Crank-Nicolson method is conditionally stable. 
Comparison with explicit methods indicates that the proposed 
method gives good solutions in both rapid and slow transient 
phenomena, although rapid transients are filtered if large 
time-steps are used. Comparison with Guy's method indicates 
that the proposed method has an advantage in terms of 
computation time and stability. 

2. Ca lcu la t ion  m e t h o d  

2. I. Basic equations 

To describe the fluid motion in a gas pipeline, the following 
assumptions are made: 1) 1-D isothermal compressible flow, 2) 
steady-state friction, and 3) negligible expansion of pipe wall 
due to pressure changes. These assumptions have been 
discussed and are commonly used by many authors (for 
example, Chua 1982). The continuity and momentum equations 
written in the convection form are given by 

Pt -t- C2mx = 0 (la) 

m, + (m 2 c2/p)x + Px + (fc2/2D)mLml/P + pS = 0 (lb) 

where the friction factor f is given as a function of Reynolds 
number, and S(=(g/c2)sintk) designates the gravity term, 
which can be negligible in the calculation of gas flow. Under the 
assumption of isothermal flow, the speed of sound c is z ~ .  
Compressibility factor z is calculated in the present method by 
the simple equation for natural gas (see Reet and Skogman 
1987), which is a function of pressure and temperature in 
reasonable ranges. 

The first and second terms in Equation lb are inertia terms. 
The second term is neglected in the present paper, assuming a 
small flow velocity compared to the sound speed. This 
assumption is reasonable because the ratio of the values among 
the pressure term and the first and second inertia terms is 
approximately 1:0.1:0.01 for most cases of operations in actual 
gas pipelines (see Guy, 1967; Osiadacz, 1984). 
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2.2. D i f f e r e n t i a / m e t h o d  

Figure 1 shows a mesh used in the calculation. A pipe is divided 
into N sections. Section j is defined as the section between node 
i and i + 1. n means time level. Equations la and lb are applied 
to section j by using the centered-difference form in space and 
a fully implicit algorithm in time. The difference forms for 
Equations la and lb become 
j n  - ( n n + l  n + l  n - w i  + 1 + Pi --  Pi + a --  p'~)/(2At) 

"JV ,mi+ [ n+ll __ ran+ l)c2/A X (3a) 

jG  = t . , "  + : "+ 1 . _ mT)/ (2At  ) ~."*1+ 1 + m i  - -  m i + l  

+ (p~++~ --  p7 + 1) lAx  + ( f c Z / 4 D )  
n + l  n + l  ( m n + l  

x mi+ l + m~ I x ","-i+1 "~ m T +' ) /  

(p.+ i + p~+ ,) + t . .+ l + p~+ l)S/2 (3b) 
i + 1  ' , / ' i  + 1 

Applying Equations 3a and 3b to each section, 2 N  equations 
are derived for a pipe. The number of unknown values at time 
level n + 1, which consists of pressure and mass flux at each 
node, is 2 ( N  + 1). Since the pressure or mass flux at both ends 
of a pipe is given by boundary conditions or by the iterative 
method described in section 2.4, the number of unknown values 
is reduced to 2 N .  Thus, the Newton-Raphson method can be 
applied to solve these simultaneous equations of a pipe. 

2.3. S tab i l i t y  an lays is  

The Crank-Nicolson method is not always stable, as shown in 
section 3. However, the Von Neumann stability analysis shows 
that the differential equations (Equations 3a and 3b) of this 
method are unconditionally stable. Dimensionless expressions 
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of these equations using t * =  t / (L /c ) ,  x * =  x / L ,  p * =  P/PN, 
P* = P/PN,  U* = u/e ,  and m* = u'p*, which are introduced to 
generalize the problem, become 
n n +  1" n + l *  n* -4- ? / r a  n + l *  e i + l  + Pi - P ~ + : - P T * )  - -,...~+ x - m T + X ' ) A t * / A x *  = O  

(4a) 
. , . + 1 . .  . + .  .* _ mT* ) + .+1 .  • ..i+1 - mi - m i+ l  2(pi+l - P~+I*)At*/  

A X *  --[- * n + l *  n +  F (m i+1 + m i  1 . ) = 0  (4b) 

F *  -- ( f L / 2 D ) A t * I m *  I/P* (4c) 

The second power of m in the friction term of Equation 4b 
complicates the procedure of stability analysis. To avoid this 
complexity, the positive value F* given by Equation 4c is 
introduced. In Equation 4b, the gravity term is neglected. By 
considering p and m expressed in the Fourier expansion form 
in space, each Fourier component is written as 

p,~* = . "io Vpe a (5a) 

"*= V"meJiO (Sb) n i 

where V~ and V~, are the amplitude functions at time level n 
of a particular component whose phase angle is 0. The phase 
angle is defined as 0 = k A x *  by using the wave number k, and 
j represents w/-~ .  Consequently, substituting Equations 5a 
and 5b into Equations 4a and 4b gives the following equations: 

L V; d v ; - '  (6a) 

a = (2 + F*)/(1 + F* + K*) (6c) 

b = -1 / ( 1  + F* + K*) (rd) 

K *  = { ( 2 A t * l A x * )  sin 0/(1 + cos 0)} 2 (re) 

In these expressions, W represents the amplification matrix. 
The stability criterion is that the complex eigenvalue 2 of W 
must be less than or equal to one. The eigenvalue 2 of Equation 
6b becomes 

2 = {(1 + F*/2) -I- x/(F*/2) 2 -- K*}/(1 + F* + K*) (7) 

Since both F* and K* are positive values according to 
Equations 4c and 6e, the conditions of121 -< 1 is derived. This 

N o t a t i o n  

A Section area of pipe (m2) 
c Sound speed in isothermal condition (m/s) 
D Pipe diameter (m) 
f Darcy-Weisbach friction factor 
AG Change of mass in control volume V'around a joint 

over the time step At (kg) 
L Pipe length (m) 
M Consumption at a joint (kg/s) 
m Mass flux ( = up)  (kg/s.m2) 
N Maximum number of sections of a pipe or maximum 

number of joints in a network 
p Absolute pressure (Pa) 
PN Atmospheric pressure (Pa) 
R Gas constant (m2/s2.K) 
T Absolute temperature (K) 
At Time step for computation (s) 
u Flow velocity (m/s) 
V Control volume around a joint (m3) 
Ax Length of a section for computation (m) 

G r e e k  s y m b o l s  

p Density (kg/m3) 
PN Density at the normal conditions (kg/m3) 

S u b s c r i p t s  

i Node number of a pipe or pipe number connecting 
a joint 

j Section number of a pipe 
N Maximum section number of a pipe 
t Partial differentiation by time t 
x Partial differentiation by distance x 

S u p e r s c r i p t  

n Time level 
* Designation of dimensionless expression 

N o t e :  Flow rate m3/h is shown in the normal conditions of 
273 K, 0.1 MPa. 
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means that the basic differential equations of the present 
method are unconditionally stable. The same procedure of the 
stability analysis can be applied to the Crank-Nicolson method 
used by Streeter and Wylie (1969), which indicated that the 
stability criterion becomes a function of At* and 0 and that a 
large At* related with B yields the unstable condition 11) > 1. 

2.4. Iterative calculation method at joints 

A real pipeline network involves junctions, consumer stations, 
valve stations, and other boundaries. Such elements yield new 
boundary conditions responding to operation modes. To 
consider these features of nonpipe elements complicates the 
application of the Newton-Raphson method to the whole 
network system. For this reason, Guy (1967) proposed an 
iterative calculation method for the joints between pipes. The 
present study generalizes the concept of Guy’s method in order 
to calculate the nodes with a consumer station and arbitrary 
number of branches. 

In Figure 2, the following equation of state is applied to the 
control volume I/ designated by the dotted line around the 
joint k: 

(P 
n+l 

- p”)V = c2AG (8) 

where P is the pressure at the joint and the superscript n 

represents the time level. The change of mass AG in the control 
volume V over the time step At is given by 

AG=At 
1 

i &(I$+ + ml)Ai/2 - M 
I 

(9) 
i=l 

where the subscript i indicates the pipe number connected to 
the joint k. Mass flux mi of pipe i is evaluated at the nearest 
node to the joint. Ki is defined as + 1 if the flow goes into the 
joint and -1 if the flow comes out of the joint. M represents 
a consumption at the joint. Substituting Equation 9 into 
Equation 8, the following equation is obtained: 

(P”+’ - p”)V + cZAt i K,(ml+’ 
1 

+ ml)Ai/2 - M = 0 (10) 
i=l 1 

P “+l, which satisfies Equation 10 at all the pipe ends forming 
the joints, can be calculated in an iterative manner by using 
the bisection method (see Osiadacz 1984) or by Guy’s method, 
which is used in the present study (see Guy 1967). Figure 3 
shows the flow chart of the calculation. 

3. Comparison with other methods using a 
simple line 

3.1. Definition of the example 

Let us suppose a simple straight line of 5 km in length and 
500 mm internal diameter, holding a gas of molecular weight 
18.0 at a pressure of 5 MPa. Now the outlet valve opens, and 

v pipe node 

\ 

1 ‘joint between pipes 

Figure 2 Definition sketch of pipe node and joint 

Read all data & 

initial condition 

N-R method 

Does p converged 

figure 3 Flow chart of the present method 

the outflow steps up from zero to 300,000 mj/h while the inlet 
pressure is maintained at 5 MPa. After maintaining this 
condition for 20 minutes, the outlet valve closes. The friction 
factor f is assumed to be 0.008 for the calculation and the 
pipeline is not divided into sections in order to demonstrate 
the instability that often occurs due to an insufficient number 
of sections. 

3.2. Comparison with the Crank-Nicolson method 

The partially implicit algorithm of the Crank-Nicolson method 
in time, which does not always give a stable solution according 
to the Neumann stability analysis, is applied to the example in 
section 3.1. Figure 4a-1 and 4a-2 show the results of the 
Crank-Nicolson method used by Streeter and Wylie (1969). 
Figure 4b-1 and Figure 4b-2 show the results of the proposed 
method. As shown in Figure 4a-2, the Crank-Nicolson method 
gives an unstable solution in the case of a large time step. And 
even in the case of a small time step as shown in Figure 4a-1, 
the method gives unrealistic oscillation, as described in the 
following section. 

3.3. Comparisons with MOC, the two-step 
Lax-Wendroff method, and Guy’s implicit method 

Programs based on two well-known explicit methods, i.e., 
MOC (Wylie and Streeter 1978) and the two-step Lax-Wen- 
droff method (Roache 1985; Poloni 1987), are developed for 
comparison with the proposed method. Here, the two-step 
Lax-Wendroff method includes the second inertia term, and 
no technique is used to suppress numerical overshoots. These 
explicit methods give a correct answer when pipes are divided 
into sufficiently small sections. Guy’s implicit method, which 
has not been previously investigated in comparison with other 
methods by any author, is also compared in the same manner 
as in the above discussion. 

Since the calculation results of MOC using 8 and 25 sections 
agree well with each other, the eight sections are determined 
sufficient to simulate the transient for other methods. Guy’s 
method uses nine sections, since the method requires an odd 
number of sections for the boundary condition of inlet pressure 
and outlet flow. 

Figure Sa and 5b show the results of the two explicit 
methods. These results agree closely with each other in spite 
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Table 1 Ratio of computation time for the 
example of section 3 

Present method (At = 1 min.) 1 
Present method (At = 0.05 min.) 30 
MOC 28 
Two-step Lax-Wendroff method 29 
Guy's method (At = 0.05 min.) 35 

of neglecting the second inertia term in MOC. The calculated 
frequency of the oscillation after closure of the outlet valve is 
0.0173 Hz. This coincides with a quarter wavelength oscillation 
of 0.0174 Hz given by c/(4L), where the sound speed c is 
348.5 m/s and the pipe length L is 5000 m. 

Figures 5c and 5d show the results of two implicit methods. 
The oscillation is greatly damped in Guy's method. The same 
tendency can be seen in the proposed method when a small 
number of sections and a large time step are adopted, as shown 
in Figures 4b-1 and 4b-2. The frequencies of the oscillation are 
0.0177 Hz in the proposed method and 0.0182 Hz in Guy's 
method. However, the frequency in Figure 4a-1 of the 
Crank-Nicolson method is 0.023 Hz. 

The above results indicate that the proposed method requires 
a small time step and a large number of sections if the problem 
to be solved involves rapid transients at~d the subject of interest 
concentrates on such phenomena. In other words, if these 
conditions apply, the method loses the advantage of fast 
computation, as shown in Table 1. However, in most cases of 
long-term computations of industrial gas pipelines, we are not 
concerned with such short-term rapid phenomena but rather 
with long-term transients. Consequently, small time steps and 
large numbers of sections are seldom required from a practical 
viewpoint. 

4.  A n  e x a m p l e  o f  a p p l i c a t i o n  t o  a n e t w o r k  

Although the proposed method is already used in real large-city 
gas networks and has been proven to agree with the actual 
field measurements, the presentation of the results and 
operational conditions of such large complex networks is too 
tedious for our discussion. For  this reason, Guy's (1967) sample 
calculation is chosen as an example of network calculation. 

Figure 6 shows the network configuration and its 
dimensions. The network is assumed to start with steady 
conditions in which the inlet pressure at point 1 is 4.2 MPa and 
the outflows in the normal conditions at points 10 to 17 are 
written in the figure. All the outflows are then doubled over a 
period of half an hour, after which they remain at this increased 
value. The inflow at point 1 remains constant throughout the 
simulation. The fluid is methane gas, and the friction factor is 
set according to the Moody diagram. After 3.5 hours the 
pressure distribution is computed. For  comparison, MOC is 
used again, where the shortest pipe is divided into four sections 
to obtain the accurate solution. A single section is adopted for 
the proposed method, and three sections for Guy's method, 
since Guy's method requires more than two sections for 
accuracy. 

Figure 7 shows the pressure distribution along point 1 to I0 
after 3.5 hours. The results of the two implicit methods agree 
with that of MOC. Even if the time step is increased from 1 
minute to 30 minutes for the two implicit methods, almost the 
same results as those of MOC are obtained, and the difference 
in the calculated pressure at point 10 between the proposed 
method and MOC is 1.8 percent. Table 2 shows the ratio of 
computation time. It can be seen that the computation time is 
reduced by the proposed method. 
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Figure 6 An example network for calculation 
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Figure 7 Calculated pressure distribution at 3.5 hours 

5. C o n v e r g e n c e  a t  j o i n t s  

Although the proposed method applied to a pipe is 
unconditionally stable, the iterative calculation at joints does 
not always assure the convergence. To obtain practical 

Table 2 Ratio of computation time for the 
example of section 4 

Present method (At = 30 min.) 
Present method (At = 1 min.) 
Guy's method (At = 30 min.) 
MOC (N = 4) 

1 
7.2 
4.3 

103 

knowledge on this feature, the following studies are per- 
formed again in the simple line described in section 3.1. The 
pipeline is divided into several pipes with joints. The 
convergence tolerance of 10 Pa is applied to all joints. 

Figure 8 shows how the two parameters fL/D and At* relate 
to the convergence. Here, fL/D is a dimensionless parameter 
relating pipeline size, and At* is the dimensionless timestep. 
These quantities are defined in the dimensionless equations 
(Equations 4a and 4b). N denotes the number of joints. The 
maximum number of iterations is limited to 100. Range A, in 
Figure 8, refers to the region where the convergence is attained 
within the maximum number of iterations. In range B, 
solutions are obtained although the calculation is interrupted 
at the maximum number of iterations. In this range, the 
convergence tolerance is mitigated. In range C, the computa- 
tion is terminated due to floating error. Although the accuracy 
of the simulation in range B is not investigated in this study, 
practically reasonable solutions are obtained in range B near to 
range A. These features imply that a large value of fl_/D 
stabilizes the computation. 

Figure 9 shows the relation between the time step At* 
and the maximum number of iterations. A large time step can 
be used if the maximum number of iterations is large enough. 

The above finding may be applied to the example of 
section 4, which has the dimensionless parameter fL/D 
of 13,200. It can be expected that this large fL/D makes 
the computation stable. Since the number of joints of this 
example is almost the same as that of Figure 9, the 
maximum time step of 5,460 seconds for convergence is 
estimated under the given limit of iterations of 500. The 
convergence is confirmed even with such large time steps. 
Therefore, the dimensionless relation in Figure 9 could 
be a fairly valid generalization. 

fLID 

iAj. B ~ C 
i" 

/ B 

I00 

A: e d 

I J B : Loop over 
I C : Floating error 

0 I I 

0 5 10 At  * 

Figure 8 Influence of fL /D and dimensionless time step on 
convergence (the limited number of iteration = 100) 
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Figure 9 Influence of dimensionless time step and limited number 
of iteration on convergence (N  = 7, fL /D  = 1 ) 

6. C o n c l u s i o n s  

A fully implicit finite-difference method for the calculation of 
unsteady gas flow in pipeline networks is presented. Through 
the stability analysis and the comparison to other methods, the 
following conclusions are derived: 
(1) The proposed method applied to a pipe is unconditionally 
stable. The convergence of the calculation at joints by using 
the iterative convergence method depends on the time-step, the 
number of iterations, and the pipeline size. However, it is shown 
that the convergence is predictable in most cases. 
(2) The adoption of a small number of sections filters the local 
oscillatory responses in time and space. These responses can 
be calculated using a sufficient number of sections and a small 
time step, and agree with the results of traditional explicit 
methods. Since such local responses are less important in the 

computation of large complicated networks, the method 
practically gives good solutions using a large time step. 
(3) Relative to Guy's implicit method, MOC, and the two-step 
Lax-Wendroff method, the proposed method can reduce the 
computation time. 
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